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Vibrations of a quantized vortex in a weakly 
interacting Bose fluid 

G Rowlands 
Department of Physics, University of Warwick, Coventry, Warwickshire, U K  

MS received I5 May 1972 

Abstract. The vibrations of a quantized vortex are studied in the long wavelength limit. 
It is shown that the frequency is proportional to  the square of the wavenumber in contra- 
distinction to previous work. 

1. Introduction 

I t  is well known that vortex lines can exist in superfluid helium and that these lines can 
be made to vibrate (see eg the review article by Vinen (1961)). To study theoretically the 
properties of vortices and in particular their possible modes of vibraEion i t  is necessary 
to consider a model equation which describes the relevant properties of 4HeII. 

A model equation which has received a considerable amount ofattention is one based 
on Bogoliubov's theory of a weakly interacting Bose gas. In this model the properties of 
the system are described by a macroscopic wavefunction II/ which satisfies the nonlinear 
Schrodinger equation 

Vo is a constant and is a measure of the strength of interaction between the particles. 
1 $ 1 2  is interpreted as the condensate density, which for a weakly interacting gas is 
approximately equal to the total density. Unfortunately it is found that the condensate 
density is only of order 20 % of the total density even as one approaches the absolute 
zero of temperature (Cummings et a1 1970), so the weakly interacting assumption basic 
to the derivation of (1.1) is not strictly valid for helium. However, there seems at  present 
to be no alternative equation which is at  all tractable. Thus in this paper we will discuss 
the solutions of (1.1) and expect the qualitative features to apply to helium. Various 
other authors, in particular Pitaevskii (1961) and Fetter (1965,1972), have used essentially 
equation (1.1) to study vortex vibrations. 

An equation for the equilibrium state of a single line vortex is obtained by writing 

$(x, t )  = Oe(r) exp(i0- iEt/h) 

and substituting in (1.1) to give 

1 d d o  
- -  r e  + a-- Oe-VO: = 0 ,  
r dr( dr ) ( r') 
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where a = 2m,E/h2, V = 2m0V0/h2. No exact solution of (1.2) is known but a useful 
approximation is one originally given by Fetter (1965), namely 

This has the correct behaviour as r + 0 and r + CO. 
Pitaevskii (1961) has studied small amplitude oscillations of a vortex line and showed 

that for long wavelength disturbances the frequency w and wavenumber k (along the 
axis of the vortex) are related in the following manner: 

The k dependence is identical to  that obtained for the vibrations of a classical vortex by 
Kelvin many years ago (Thomson 1910). Fetter (1965) has studied the mathematical 
properties of the equations describing the vibrations of a quantized vortex and has shown 
that there exists a continuum of modes which he identifies with scattering states, and 
possibly an  infinite number of bound states, the lowest of which he identifies with the 
mode discussed by Pitaevskii. Fetter uses a variational principle to  investigate the 
w,  k relation for this mode for all k ,  but unfortunately his method breaks down in the 
limit k -+ 0 so he is unable to make an independent judgement on the validity of 
Pitaevskii's result. 

It is the purpose of the present paper to study the long wavelength vibrations of a 
line vortex by applying a perturbation method, previously developed by the author to 
study the stability ofnonlinear waves (Rowlands 1969), to equation (1.1). I t  is found that 
there exists discrete states, with o = bk2 and continuum states with w = A+ak2.  Here 
a and b are constants but I can take a continuum of values. 

An inconsistency is shown to exist in the expansion scheme used by Pitaevskii. The 
difference between the above results and that of Kelvin is attributed to  the fact that in a 
classical vortex the density is discontinuous at the core radius whilst for a quantum 
vortex the density is a continuous function of the radial distance. 

2. Vibrations of a line vortex 

Equations describing the small amplitude oscillations of a vortex are obtained by 
linearizing equation (1.1)about the equilibrium state (1.2). It is first, however, convenient 
to write 

W ,  t )  = @(x, t )  exp(ix(x, t ) ) ,  

where @ and x are both real, write 

@(x, t )  = Qe(r) + 6@(r) exp(im0 + ikz - iwt), 

~ ( x ,  t )  = 0 - Et/h  - id2 exp(im0 + ikz - iwt), 

and treat 6@ and 62 as small. 
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The m = 0 case has to be treated separately. For m # 0 the linearized equations 
may be written in the form 

where 6% = -m@,,62 and 0 = (2m,/A)o/m. Here 

L ,  = 1 d  - r -+c t - -3v@:- (Y ) ,  d 
i dr dr 

and 
L,  = L ,  + 2vo:. 

These are equivalent to equation (22) of Pitaevskii (1961) and equation (18) of Fetter 
(1965). The above equations, together with the condition that 6@ and 6% must be 
bounded functions of r ,  serve to define the relation between o and k. 

A major difficulty in trying to solve (2.1) and (2.2) is that the r dependence 0: the 
coefficients, through De,  is complicated and in fact is only known numerically. However, 
by using a perturbation theory developed by the present author (Rowlands 1969), one 
can, in the long wavelength limit, obtain the desired U, k relationship without a detailed 
knowledge of the r dependence of De. 

and 
6 x o  respectively. For r -+ 0 both 6 0 ,  and 61,  have two solutions proportional to 
rim- ' I  and r l m + ' l ,  whilst the other two solutions are unbounded. For r -+ x two types of 
solution exist; one where a@, 2 l / r /m1+2 and 6z0 2 1/r1"1, and the other where both 
6@,, and 6xo  are proportional to exp{ - J(2cc)r}/Jr. Thus there exists two distinct types 
of solution which will be referred to as class I and I1 solutions. Both are finite as r + 0, 
but class I solutions are those where 6(Do -+ l/rlmlf2 and 6xo -+ l/rlml as r -+ x whilst 
class I1 solutions are those where both and 6 x ,  approach zero exponentially as 
r - ,  x. 

The perturbation method is based on application of the so-called many-time per- 
turbation method used in statistical mechanics (see eg Frieman 1963) which itself is 
based on a method due to Bogoliubov and Krylov (Bogoliubov and Mitropolsky 1961). 
In the long wave limit (k --+ 0) we write 

6@(r)  = A(r,, r,, . . .)(6@,(r)+ k601(r, r l ,  . . .)+ k26(D2 + . . .I, 
Sx(r) = A(r,, r 2 , .  . .)(G~,(r)+kGx,(r, r l ,  . . .)+k26xz + . . .). 

First consider solutions of (2.1) and (2.2) in the limit o = k = 0, namely 

and 
W =  O+kGl+k2W2+ . . . .  

The quantities r l ,  r 2 ,  etc are defined such that dr,/dr = k, dr,jdr = kZ, etc but otherwise 
these variables are treated as independent. To first order in the expansion scheme 

2 L16@, +;26X, = 

2m2 1 dA d6xo 6~ 
L26x1+---6@., = -Elmz6@o--- 2-+- , 

r2 A dr l (  dr r o )  

(2.3) 

(2.4) 
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with L ,  and L ,  operating with respect to r only. I t  is now necessary to  consider the 
adjoint equations in the limit W = k = 0. These take the form 

and 
2 

L,GXo+ +p,+ = 0. 

Comparison of these equations with those for 6O0 and 6 x o  (namely equations (2.1) and 
(2.2) with (3 = k = 0) show that 6@: = m26O0 and S x z  = 6 x o .  

Multiplication of (2.3) by r6@; , (2.4) by rdxl ,  integrating over all rand  adding gives 
the consistency equation 

where 
m 

(X, Y) = 5 rdrXY 
0 

Now 

since 6Q0 remains finite as r + 0 and is of order l /r lm1+2 as r -+ CO. Similarly the term 
involving 6 x o  in the coefficient of A -  '(dA/dr,) is zero so that the consistency condition 
gives (3, = 0. It may then be shown using equations (2.3) and (2.4) that 

1 dA 
A dr, 6Q0 = ---r6a0, 

and 
1 dA - 
A dr,  

dx ,  = ---rdxo. 

To next order in the expansion scheme 

2 
r L16@, ++XZ 

1 d { ( d r l  6:,)] 1 dZA 
A dr, A dr: 

= -Wz6xo+6@o--- A 2-+- ---6@o 

and a similar equation is obtained for 6 x 2 .  A consistency condition may then be ob- 
tained and by using the above forms for 6@., and 6x1 it takes the form 



326 G RowlaHds 

where 7 = m 2 ( S 0 i ) .  This equation may be simplified by integration by parts to give 
finally 

d2 A 
( - ~ , 2 m ~ ( 6 @ ,  , 6 ~ , )  + ?)A + /?- = 0, 

dr , 
where /? = lim r 2 6 X i .  

Now as stated above there are two classes of solution depending on the r dependence 
of 6 0 ,  and 6x0 as r + m. We see that for class I 1  the quantity p as defined above is 
zero so that 

I- X 

that is a discrete state for a particular value of k.  These correspond to  bound states as 
defined by Fetter since the solutions decrease exponentially as r -+ x. This same result 
follows from a variational principle applied to (2 .1)  and (2 .2)  if for the trial functions one 
takes 6@ = 60, and 6% = 6 x o .  

For class I type solutions i t  is seen that /? = 0 for / m /  > 2 so again we only have a 
discrete solution but now the solutions do not approach zero exponentially as r 4 r, 
but rather as powers of l/r. The case lml = 1 must be treated separately. In particular 
it  is found by differentiation of (1.4) that = d@,,/dr and 6 x ,  = 0 J r .  in which case 
the equation for A reduces to 

d2A 
dr: 
- + ( y ' - G 2 ) A  = 0. 

where 

Thus 

(7.6) 

where i may take a continuum of values and is associated with the r 1  dependence of A .  
In summary it 'has been shown that a discrete solution to the equations exists with 

w = ak2 where a is a constant given by (2 .5) .  Further for Iml = 1 there also exists 
solutions where o = A+ bk2 with A taking a continuum of values and b given by (2.6). 

The case of Iml = 1 has been studied by Pitaevskii who shows in contrast to the 
above that a discrete state exists with 

o = -In(&) hk2 
2m0 

I f  one assumes that this result is correct then in equation (22)  of Pitaevskii one may 
neglect the term proportional to  x 2  since E = - x 2  In x. If these equations are then 
linearized about the state E = 0 one obtains Pitaevskii's equations (25) .  I f  the first of 
these equations is multiplied by r f o ,  integrated over all 5 ,  and added to  the second 
equation multiplied by {f? and integrated, one obtains the consistency condition 
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However, using equation (23) of that paper one finds that this integral is simply equal to  
-limg,, 'Pi(<) = - 1. Thus there is an inconsistency in the expansion scheme, which 
in the light of the present work is seen to  be associated with the e (or o) dependence on k .  
Of course a dispersion relation of the form obtained by Pitaevskii was obtained many 
years ago by Kelvin for a classical vortex, using a nonperturbative analysis. However, 
in the classical problem the structure of the vortex has to be assumed and Kelvin took 
it to  be of a form where the density gradient had a discontinuity at  the so-called vortex 
core radius. I t  is this discontinuity which leads to the particular form of the dispersion 
relation. In the present problem the structure of the core is not arbitrary, but given by 
De, and in particular is continuous, so that the result that the dispersion relation is 
qualitatively different from Kelvin's is not surprising. 

Fetter has used a variational method to discuss the discrete state corresponding to 
m = 1. Unfortunately his method breaks down for k + 0 as is seen from table 2 of 
Fetter where K( = k) becomes imaginary in this limit. This difficulty is probably due to 
the fact that the trial functions Fetter used do not have the correct r dependence for 
r -+ CO. This is shown by the fact that if the trial functions are taken to  be and Sxo 
then one does get the correct w,  k relation as given by (2.5) above. 

As stated above the m = 0 case has to be treated separately. For this case, the lowest 
order equations are 

and 

One solution ofthe last equation is 6xo = constant. By considering the small rexpansion 
of this equation i t  is found that this is the only solution which remains finite for all r .  
To study the solution of (2.6), first consider the eigenvalue problem 

and note that one solution is known namely = @ e ,  E. = 0. I t  follows from the general 
theory of differential equations (Ince 1927) that since 0, is monatomic that the other 
eigenfunctions which exist do so for In < 0. Thus a solution does not exist for I, = 2V 
from which we conclude that (2.6) does not have a solution. This being so one cannot 
start a perturbative expansion about w = k = 0, a result which is borne out by Fetter's 
variational calculation which suggests that w approaches a constant as k + 0. 

3. Conclusions 

The nonlinear Schrodinger equation is taken as a model equation to study the properties 
of vortices in helium 11. A perturbation expansion is used to obtain solutions of this 
equation corresponding to the long wavelength vibration of vortices. Two types of 
solutions are found ; those where o = ak2 which correspond to discrete.states, and those 
where w = I + b k 2 ,  where I can take a continuum of values (a  and b are constants). 
This result is in disagreement with that of Pitaevskii who found w to be proportional to 
k 2  In k. 
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I t  is clear that the method presented in this paper could be used to obtain the higher 
order terms in the series expansion for o. Unfortunately it is extremely difficult, pro- 
bably imnossible, to make a statement about the convergence of the method so the 
results obtained in the paper rest on the assumption that the series solution is at least 
asymptotic. 
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